K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2016

Ta có:

\(\frac{1}{x+y}\) \(\le\)\(\frac{1}{4}\)(\(\frac{1}{x}\)+\(\frac{1}{y}\))

=> \(\frac{1}{x+y}\)\(\le\)\(\frac{x+y}{4xy}\)

=> 4xy \(\le\)(x+y)2

=> 2xy \(\le\)x2+y2

x^2 +y ^2-2xy luôn lớn hơn hoặc bằng 0 nhé! Vội quá, không giải nữa nha!

5 tháng 11 2017

a) 9x2 - 36

=(3x)2-62

=(3x-6)(3x+6)

=4(x-3)(x+3)

b) 2x3y-4x2y2+2xy3

=2xy(x2-2xy+y2)

=2xy(x-y)2

c) ab - b2-a+b

=ab-a-b2+b

=(ab-a)-(b2-b)

=a(b-1)-b(b-1)

=(b-1)(a-b)

P/s đùng để ý đến câu trả lời của mình

3 tháng 6 2019

Em thử ạ!Em không chắc đâu.Hơi quá sức em rồi

Ta có: \(VT=\Sigma\frac{x^3}{z+y+yz+1}=\Sigma\frac{x^3}{z+y+\frac{1}{x}+1}\)

\(=\Sigma\frac{x^4}{xz+xy+1+x}=\frac{x^4}{xy+xz+x+1}+\frac{y^4}{yz+xy+y+1}+\frac{z^4}{zx+yz+z+1}\)

Áp dụng BĐT Cauchy-Schwarz dạng Engel,suy ra:

\(VT\ge\frac{\left(x^2+y^2+z^2\right)^2}{\left(x+y+z\right)+2\left(xy+yz+zx\right)+3}\)

\(\ge\frac{\left(\frac{1}{3}\left(x+y+z\right)^2\right)^2}{\left(x+y+z\right)+\frac{2}{3}\left(x+y+z\right)^2+3}\) (áp dụng BĐT \(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3};ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}\))

Đặt \(t=x+y+z\ge3\sqrt{xyz}=3\) Dấu "=" xảy ra khi x = y = z

Ta cần chứng minh: \(\frac{\frac{t^4}{9}}{\frac{2}{3}t^2+t+3}\ge\frac{3}{4}\Leftrightarrow\frac{t^4}{9\left(\frac{2}{3}t^2+t+3\right)}=\frac{t^4}{6t^2+9t+27}\ge\frac{3}{4}\)(\(t\ge3\))

Thật vậy,BĐT tương đương với: \(4t^4\ge18t^2+27t+81\)

\(\Leftrightarrow3t^4-18t^2-27t+t^4-81\ge0\)

Ta có: \(VT\ge3t^4-18t^2-27t+3^4-81\)

\(=3t^4-18t^2-27t\).Cần chứng minh\(3t^4-18t^2-27t\ge0\Leftrightarrow3t^4\ge18t^2+27t\)

Thật vậy,chia hai vế cho \(t\ge3\),ta cần chứng minh \(3t^3\ge18t+27\Leftrightarrow3t^3-18t-27\ge0\)

\(\Leftrightarrow3\left(t^3-27\right)-18\left(t-3\right)\ge0\)

\(\Leftrightarrow\left(t-3\right)\left(3t^2+9t+27\right)-18\left(t-3\right)\ge0\)

\(\Leftrightarrow\left(t-3\right)\left(3t^2+9t+9\right)\ge0\)

BĐT hiển nhiên đúng,do \(t\ge3\) và \(3t^2+9t+9=3\left(t+\frac{3}{2}\right)^2+\frac{9}{4}\ge\frac{9}{4}>0\)

Dấu "=" xảy ra khi t = 3 tức là \(\hept{\begin{cases}x=y=z\\xyz=1\end{cases}}\Leftrightarrow x=y=z=1\)

Chứng minh hoàn tất

3 tháng 6 2019

Em sửa chút cho bài làm ngắn gọn hơn.

Khúc chứng minh: \(4t^4\ge18t^2+27t+81\)

\(\Leftrightarrow4t^4-18t^2-27t-81\ge0\)

\(\Leftrightarrow\left(t-3\right)\left(4t^3+12t^2+18t+27\right)\ge0\)

BĐT hiển nhiên đúng do \(t\ge3\Rightarrow\hept{\begin{cases}t-3\ge0\\4t^3+12t^2+18t+27>0\end{cases}}\)

Còn khúc sau y chang :P Lúc làm rối quá nên không nghĩ ra ạ!

20 tháng 7 2019

Áp dụng bất đẳng thức Cauchy ta được:

\(x+y\ge2\sqrt{xy},\frac{1}{x}+\frac{1}{y}\ge2\sqrt{\frac{1}{xy}}\)

Do đó \(\left(x+y\right)\left(\frac{1}{x}+\frac{1}{y}\right)\ge4\sqrt{xy}.\sqrt{\frac{1}{xy}}=4\)

\(\Leftrightarrow\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\)

Đẳng thức xảy ra khi \(x=y\)

20 tháng 7 2019

Cảm ơn bạn nhiều

\(xy\le\frac{\left(x+y\right)^2}{4}\)( bđt cauchy ) 

\(\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{x}{y}.\frac{y}{x}}=2\)( bđt cauchy ) 

\(\Rightarrow\frac{x}{y}+\frac{y}{x}+\frac{xy}{\left(x+y\right)^2}\ge2+\frac{\frac{\left(x+y\right)^2}{4}}{\left(x+y\right)^2}=2+\frac{1}{4}=\frac{9}{4}\)

6 tháng 11 2018

\(ab+bc+ca\le a^2+b^2+c^2\le\frac{\left(a+b+c\right)^2}{3}\) ( bđt phụ + Cauchy-Schwarz dạng Engel ) 

Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c\)

CM bđt phụ : \(x^2+y^2+z^2\ge xy+yz+zx\)

\(\Leftrightarrow\)\(2x^2+2y^2+2z^2\ge2xy+2yz+2zx\)

\(\Leftrightarrow\)\(2x^2+2y^2+2z^2-2xy-2yz-2zx\ge0\)

\(\Leftrightarrow\)\(\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)\ge0\)

\(\Leftrightarrow\)\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\) ( luôn đúng ) 

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=z\)

Chúc bạn học tốt ~ 

17 tháng 8 2021

Ta có : \(27xyz\le\left(x+y+z\right)^3\)

<=> \(\left(x+y+z\right)^3-27xyz\ge0\)

<=> (x + y)3 + 3(x + y)z(x + y + z) + z3 - 27xyz \(\ge0\)

=> x3 + y3 + 3xy(x + y) + 3(x + y)z(x + y + z) + z3 - 27xyz \(\ge\)

<=> (x3 + y3 + z3) + 3(x + y)[xy + z(x + y + z)] - 27xyz \(\ge0\)

<=> (x3 + y3 + z3) + 3(x + y)(y + z)(z + x) - 27xyz   \(\ge0\)

mà  x + y \(\ge2\sqrt{xy}\)

Thật vậy x + y \(\ge2\sqrt{xy}\)

=> (x + y)2 \(\ge\)4xy 

<=> x2 - 2xy + y2  \(\ge\) 0

<=> (x - y)2 \(\ge\)0 (đúng \(\forall x;y>0\))

Tương tự ta được y + z \(\ge2\sqrt{yz}\)

z + x \(\ge2\sqrt{xz}\)

Khi đó 3(x + y)(y + z)(z + x) \(\ge3.2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}=24xyz\)(dấu "=" xảy ra khi x = y = z)

=> (x3 + y3 + z3) + 3(x + y)(y + z)(z + x) - 27xyz   \(\ge0\)

<=> (x3 + y3 + z3) + 24xyz - 27xyz \(\ge0\)

<=> x3 + y3 + z3 - 3xyz   \(\ge0\)

<=> (x + y + z)[(x - y)2 + (y - z)2 + (z - x)2\(\ge\)0 (đúng)

=> ĐPCM

NV
18 tháng 6 2020

\(\Leftrightarrow\frac{1}{x+y}\le\frac{x+y}{4xy}\)

\(\Leftrightarrow\left(x+y\right)^2\ge4xy\)

\(\Leftrightarrow x^2+y^2-2xy\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\ge0\) (luôn đúng)

Dấu "=" xảy ra khi \(x=y\)